Mining Quantitative Association Rules in Protein Sequences
نویسندگان
چکیده
Lot of research has gone into understanding the composition and nature of proteins, still many things remain to be understood satisfactorily. It is now generally believed that amino acid sequences of proteins are not random, and thus the patterns of amino acids that we observe in the protein sequences are also non-random. In this study, we have attempted to decipher the nature of associations between different amino acids that are present in a protein. This very basic analysis provides insights into the co-occurrence of certain amino acids in a protein. Such association rules are desirable for enhancing our understanding of protein composition and hold the potential to give clues regarding the global interactions amongst some particular sets of amino acids occuring in proteins. Presence of strong non-trivial associations suggests further evidence for non-randomness of protein sequences. Knowledge of these rules or constraints is highly desirable for the in-vitro synthesis of artificial proteins.
منابع مشابه
A new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملOptimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملData Mining for Identification of Forkhead Box O (FOXO3a) in Different Organisms Using Nucleotide and Tandem Repeat Sequences
Background: Deregulation of FOXO3a gene which belongs to Forkhead box O (FOXO) transcription factors, can cause cancer (e.g. breast cancer). FOXO factors have important role in ubiquitination, acetylation, de-acetylation, protein-protein interactions and phosphorylation. Understanding the regulation and mechanisms of FOXO3a can lead to cancer treatment. The aim of this study recent association...
متن کاملUsing a Data Mining Tool and FP-Growth Algorithm Application for Extraction of the Rules in two Different Dataset (TECHNICAL NOTE)
In this paper, we want to improve association rules in order to be used in recommenders. Recommender systems present a method to create the personalized offers. One of the most important types of recommender systems is the collaborative filtering that deals with data mining in user information and offering them the appropriate item. Among the data mining methods, finding frequent item sets and ...
متن کامل